Oddification of the Cohomology of Type A Springer Varieties
نویسندگان
چکیده
We identify the ring of odd symmetric functions introduced by Ellis and Khovanov as the space of skew polynomials fixed by a natural action of the Hecke algebra at q = −1. This allows us to define graded modules over the Hecke algebra at q = −1 that are ‘odd’ analogs of the cohomology of type A Springer varieties. The graded module associated to the full flag variety corresponds to the quotient of the skew polynomial ring by the left ideal of nonconstant odd symmetric functions. The top degree component of the odd cohomology of Springer varieties is identifiedwith the corresponding Specht module of the Hecke algebra at q = −1.
منابع مشابه
A Hessenberg Generalization of the Garsia-Procesi Basis for the Cohomology Ring of Springer Varieties
The Springer variety is the set of flags stabilized by a nilpotent operator. In 1976, T.A. Springer observed that this variety’s cohomology ring carries a symmetric group action, and he offered a deep geometric construction of this action. Sixteen years later, Garsia and Procesi made Springer’s work more transparent and accessible by presenting the cohomology ring as a graded quotient of a poly...
متن کاملSpringer Representations on the Khovanov Springer Varieties
Springer varieties are studied because their cohomology carries a natural action of the symmetric group Sn and their top-dimensional cohomology is irreducible. In his work on tangle invariants, Khovanov constructed a family of Springer varieties Xn as subvarieties of the product of spheres (S). We show that if Xn is embedded antipodally in (S) then the natural Sn-action on (S) induces an Sn-rep...
متن کاملOn GKM Description of the Equivariant Cohomology of Affine Flag Varieties and Affine Springer Fibers
For a projective variety endowed with a torus action, the equivariant cohomology is determined by the fixed points of codimension 1 subtori. Especially, when the fixed points of the torus are finite and fixed varieties under the action of codimension 1 subtori have dimension less than or equal to 2, equivariant cohomology can be described by discrete conditions on the pair of fixed points via G...
متن کاملGeometric category O and symplectic duality
The purpose of this proposal is to study algebraic symplectic varieties, which arise naturally in algebraic geometry (Hilbert schemes), representation theory (quiver varieties, Springer theory), combinatorics and polyhedral geometry (hypertoric varieties), and string theory (moduli spaces of gauge theories and of Higgs bundles). Our primary interest will be a certain category of sheaves on thes...
متن کامل